Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/camwa)

Computers and Mathematics with Applications

Which wheel graphs are determined by their Laplacian spectra?

Yuanping Zhang ^{[a,](#page-0-0)[∗](#page-0-1)}, Xiaogang Liu ^{[b](#page-0-2)}, Xuerong Yong ^{[c](#page-0-3)}

a *School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China*

^b *Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China*

^c *Department of Mathematics, University of Puerto Rico at Mayaguez, P.O. Box 9018, PR 00681, USA*

a r t i c l e i n f o

Article history: Received 12 December 2006 Received in revised form 28 April 2009 Accepted 8 July 2009

Keywords: Laplacian spectrum Cospectral graphs Eigenvalues Wheel graph

1. Introduction

A B S T R A C T

The wheel graph, denoted by W_{n+1} , is the graph obtained from the circuit C_n with *n* vertices by adding a new vertex and joining it to every vertex of *Cn*. In this paper, the wheel graph W_{n+1} , except for W_7 , is proved to be determined by its Laplacian spectrum, and a graph cospectral with the wheel graph W_7 is given.

© 2009 Elsevier Ltd. All rights reserved.

ELECTRONIC

Let $G = (V(G), E(G))$ be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$. All graphs considered here are simple and undirected. Let matrix $A(G)$ be the (0,1)-*adjacency matrix* of G and d_k the degree of the vertex v_k . The matrix $L(G) = D(G) - A(G)$ is called the Laplacian matrix of G, where $D(G)$ is the $n \times n$ diagonal matrix with $\{d_1, d_2, \ldots, d_n\}$ as diagonal entries (and all other entries 0). The polynomial $P_{L(G)}(\mu) = \det(\mu I - L(G))$, where *I* is the identity matrix, is called the Laplacian characteristic polynomial of G, which can be written as $P_{L(G)}(\mu) = q_0\mu^n + q_1\mu^{n-1} + \cdots + q_n$. Since the matrix $L(G)$ is real and symmetric, its eigenvalues, i.e., all roots of $P_{L(G)}(\mu)$, are real numbers, and are called the Laplacian eigenvalues of *G*. Assume that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n (= 0)$ are these eigenvalues; they compose the *Laplacian spectrum* of *G*. Two non-isomorphic graphs are said to be *cospectral* with respect to the Laplacian spectrum if they share the same Laplacian spectrum [\[1\]](#page-3-0). In the following, we call two graphs *cospectral* if they are cospectral with respect to the Laplacian spectrum.

Take two disjoint graphs G_1 and G_2 . A graph *G* is called the *disjoint union* (or *sum*) of G_1 and G_2 , denoted as $G = G_1 + G_2$, if $V(G) = V(G_1) \bigcup V(G_2)$ and $E(G) = E(G_1) \bigcup E(G_2)$. Similarly, the product $G_1 \times G_2$ denotes the graph obtained from $G_1 + G_2$ by adding all the edges (a, b) with $a \in V(G_1)$ and $b \in V(G_2)$. In particular, if G_2 consists of a single vertex *b*, we write $G_1 + b$ and $G_1 \times b$ instead of $G_1 + G_2$ and $G_1 \times G_2$, respectively. In these cases, *b* is called an *isolated vertex* and a *universal vertex*, respectively. A *subgraph* [\[1\]](#page-3-0) of graph *G* is constructed by taking a subset *S* of *E*(*G*) together with all vertices incident in *G* with some edge belonging to *S*. Clearly, the product graph $G_1 \times G_2$ has a complete bipartite subgraph $K_{m,n}$, where *m* and *n* are the order of *G*¹ and *G*2, respectively.

Which graphs are determined by their spectra seems to be a difficult problem in the theory of graph spectra. Up to now, many graphs have been proved to be determined by their spectra [\[2–8\]](#page-3-1). In [\[3\]](#page-3-2), the so-called *multi-fan graph* is constructed and proved to be determined by its Laplacian spectrum. Then, take the definition of the so-called *multi-wheel graph*: The multi-wheel graph is the graph $(C_{n_1}+C_{n_2}+\cdots+C_{n_k})\times b$, where $C_{n_1}+C_{n_2}+\cdots+C_{n_k}$ is the disjoint union of circuits C_{n_i} , and $k \ge 1$ and $n_i \ge 3$ for $i = 1, 2, \ldots, k$. Note that the particular case of $k = 1$ in the definition is just the wheel graph

∗ Corresponding author. *E-mail addresses:* ypzhang@lut.cn (Y. Zhang), liuxg@ust.hk (X. Liu), xryong@math.uprm.edu (X. Yong).

^{0898-1221/\$ –} see front matter © 2009 Elsevier Ltd. All rights reserved. [doi:10.1016/j.camwa.2009.07.028](http://dx.doi.org/10.1016/j.camwa.2009.07.028)

Fig. 1. The cospectral graphs W_7 and *G*.

 $W_{n_1+1} = C_{n_1} \times b$ with $n_1 + 1$ vertices. In this paper, the wheel graph W_{n_1+1} , except for W_7 , will be proved to be determined by its Laplacian spectrum. This method is also useful in proving that the multi-wheel graph $(C_{n_1} + C_{n_2} + \cdots + C_{n_k}) \times b$ is determined by its Laplacian spectrum, where $k \geq 2$. Here, we will skip the details of the proof for multi-wheel graphs. In [\[9\]](#page-3-3), a new method (see Proposition 4 in [\[9\]](#page-3-3)) is pointed out, which can be used to prove that every multi-wheel graph $(C_{n_1} + C_{n_2} + \cdots + C_{n_k}) \times b$ is determined by its Laplacian spectrum, where $k \ge 2$. But, for the wheel graph W_{n+1} , the new method in [\[9\]](#page-3-3) is useless.

2. Preliminaries

Some previously established results about the spectrum are summarized in this section. They will play an important role throughout the paper.

Lemma 2.1 ([\[10\]](#page-3-4)). Let G₁ and G₂ be graphs on disjoint sets of r and s vertices, respectively. If $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_r (= 0)$ and $\eta_1 \geq \eta_2 \geq \cdots \geq \eta_s (= 0)$ are the Laplacian spectra of graphs G_1 and G_2 , respectively, then $r + s$; $\mu_1 + s$, $\mu_2 + s$, ..., $\mu_{r-1} +$ *s*; $\eta_1 + r$, $\eta_2 + r$, ..., $\eta_{s-1} + r$; and 0 are the Laplacian spectra of graph $G_1 \times G_2$.

Lemma 2.2 (*[\[11\]](#page-3-5)*).

(1) Let G be a graph with n vertices and m edges and $d_1 \geq d_2 \geq \cdots \geq d_n$ its non-increasing degree sequence. Then some of the *coefficients in* $P_{L(G)}(\mu)$ *are*

$$
q_0 = 1; \quad q_1 = -2m; \quad q_2 = 2m^2 - m - \frac{1}{2} \sum_{i=1}^n d_i^2;
$$

 $q_{n-1} = (-1)^{n-1} nS(G); \quad q_n = 0$

where S(*G*) *is the number of spanning trees in G.*

(2) *For the Laplacian matrix of a graph, the number of components is determined from its spectrum.*

Lemma 2.3 ([\[12\]](#page-3-6)). Let graph G be a connected graph with $n \geq 3$ vertices. Then $d_2 \leq \mu_2$.

Lemma 2.4 ([\[13](#page-3-7)[,11\]](#page-3-5)). Let G be a graph with $n \ge 2$ vertices. Then $d_1 + 1 \le \mu_1 \le d_1 + d_2$.

Lemma 2.5 ([\[14\]](#page-3-8)). If G is a simple graph with n vertices, then $m_G(n) \leq \lfloor \frac{d_n}{n-d_1} \rfloor$, where $m_G(n)$ is the multiplicity of the eigenvalue *n* of $L(G)$ *and* $|x|$ *the greatest integer less than or equal to x.*

Lemma 2.6 ([\[15\]](#page-3-9)). Let \overline{G} be the complement of a graph G. Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$ and $\overline{\mu}_1 \ge \overline{\mu}_2 \ge \cdots \ge \overline{\mu}_n = 0$ be the *Laplacian spectra of graphs G and* \overline{G} *, respectively. Then* $\mu_i + \overline{\mu}_{n-i} = n$ *for any* $i \in \{1, 2, ..., n-1\}$ *.*

Lemma 2.7 (*[\[16\]](#page-3-10)*). *Let G be a connected graph on n vertices. Then n is an eigenvalue of Laplacian matrix L*(*G*) *if and only if G is the product of two graphs.*

3. Main results

First, let us check that the graphs *G* and W_7 in [Fig. 1](#page-1-0) are cospectral. By using Maple, the Laplacian characteristic polynomials of the graphs *G* and *W*⁷ are both

 $\mu^7 - 24 \mu^6 + 231 \mu^5 - 1140 \mu^4 + 3036 \mu^3 - 4128 \mu^2 + 2240 \mu.$

That is, *G* and W_7 are cospectral. Then, we will have the following proposition.

Proposition 3.1. *The wheel graph W₇ is not determined by its Laplacian spectrum.*

Theorem 3.2. *The wheel graph Wn*+1*, except for W*7*, is determined by its Laplacian spectrum.*

Fig. 2. Graph with the degree sequence 4, 4, 4, 3, 3, 2.

Proof. Since the Laplacian spectrum of the circuit C_n is 2 – 2 cos $\frac{2\pi i}{n}$ (*i* = 1, 2, ..., *n*), by [Lemma 2.1,](#page-1-1) the Laplacian spectrum of W_{n+1} is 3 – 2 cos $\frac{2\pi i}{n}$ ($i = 1, 2, ..., n-1$), and also 0 and $n+1$. Suppose a graph *G* is cospectral with W_{n+1} . [Lemma 2.2](#page-1-2) implies that graph *G* has *n* + 1 vertices, 2*n* edges and one component. Then, by [Lemma 2.7,](#page-1-3) *G* is a product of two graphs. Let $d_1 \geq d_2 \geq \cdots \geq d_{n+1}$ be the non-increasing degree sequence of graphs *G*. By [Lemma 2.3,](#page-1-4) $d_2 \leq \mu_2 \leq 5$, i.e., $d_2 \leq 5$. [Lemma 2.4](#page-1-5) implies that $d_1 + 1 \le n + 1 \le d_1 + d_2 \le d_1 + 5$, i.e., $n - 4 \le d_1 \le n$. Consider the following cases for d_1 .

Case 1. $d_1 = n - 4$. Since the multiplicity of the $\mu_1 = n + 1$ is 1, by [Lemma 2.5,](#page-1-6) 1 ≤ $\lfloor \frac{d_{n+1}}{n+1-(n-4)} \rfloor$, i.e., $d_{n+1} \ge 5$. Then, $d_2 = d_3 = \cdots = d_n = d_{n+1} = 5$, i.e., there exist at least *n* vertices of degree five in graph *G*. But, $5n + (n-4) \neq 2(2n)$, a contradiction to $\sum_{i=1}^{n+1} d_i = 2m$, where *m* is the number of edges in *G*.

*i*_c *case* 2. *d*₁ = *n* − 3. Since the multiplicity of the $\mu_1 = n + 1$ is 1, by [Lemma 2.5,](#page-1-6) 1 ≤ $\lfloor \frac{d_{n+1}}{n+1-(n-3)} \rfloor$, i.e., $d_{n+1} \geq 4$. Except for the vertex of degree $d_1 = n-3$, suppose there still exist x_5 vertices of degree five and x_4 vertices of degree four in graph *G*. $\sum_{i=1}^{n+1} d_i = 2m$ implies the following equations:

 $\int x_5 + x_4 + 1 = n + 1$ $5x_5 + 4x_4 + (n-3) = 2 \times 2n$.

Clearly, $x_5 = 3 - n$, $x_4 = 2n - 3$ is the solution of the equations. But $x_5 < 0$, a contradiction.

Case 3. $d_1 = n - 2$. By [Lemma 2.5,](#page-1-6) $1 \leq \lfloor \frac{d_{n+1}}{n+1-(n-2)} \rfloor$, i.e., $d_{n+1} \geq 3$. Except for the vertex of degree $d_1 = n - 2$, suppose there still exist *x*⁵ vertices of degree five, *x*⁴ vertices of degree four and *x*³ vertices of degree three in *G*. [Lemma 2.2](#page-1-2) and $\sum_{i=1}^{n+1} d_i = 2m$ imply the following equations:

 $\sqrt{ }$ J \mathbf{I} $x_5 + x_4 + x_3 + 1 = n + 1$ $5x_5 + 4x_4 + 3x_3 + (n-2) = 2 \times 2n$ $25x_5 + 16x_4 + 9x_3 + (n-2)^2 = n^2 + 9n$.

Clearly, $x_5 = 2n - 9$, $x_4 = 20 - 4n$, $x_3 = 3n - 11$. For $n = 4$, $x_5 < 0$, a contradiction. For $n = 5$, $x_5 = 1$, but $d_1 = 3 < 5$, a contradiction. For $n \geq 7$, $x_4 < 0$, a contradiction.

Case 4. $d_1 = n - 1$. By [Lemma 2.5,](#page-1-6) $1 \leq \lfloor \frac{d_{n+1}}{n+1-(n-1)} \rfloor$, i.e., $d_{n+1} \geq 2$. Except for the vertex of degree $d_1 = n - 1$, suppose that there still exist *x*⁵ vertices of degree five, *x*⁴ vertices of degree four, *x*³ vertices of degree three and *x*² vertices of degree two in graph *G*. [Lemma 2.2](#page-1-2) and $\sum_{i=1}^{n+1} d_i = 2m$ imply the following equations:

 $\sqrt{ }$ J \mathbf{I} $x_5 + x_4 + x_3 + x_2 + 1 = n + 1$ $5x_5 + 4x_4 + 3x_3 + 2x_2 + (n-1) = 2 \times 2n$ $25x_5 + 16x_4 + 9x_3 + 4x_2 + (n - 1)^2 = n^2 + 9n$.

By solving these equations, $x_4 = n - 3 - 3x_5$, $x_3 = 7 - n + 3x_5$, $x_2 = n - 4 - x_5$, where x_5 is an integer. And $x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ imply that max $\{\frac{n-7}{3}, 0\} \le x_5 \le \min\{\frac{n-3}{3}, n-4\}$. Clearly, $\frac{n-3}{3} < n-4$ for $n \ge 5$. Therefore, if $n \geq 5$, then $x_2 > 0$, i.e., there must exist vertices of degree two in graph *G*. Note that *G* is a product of two graphs and *G* has a complete bipartite subgraph K_{m_1,m_2} , where $m_1+m_2=n+1$. Then, for $n\geq 5$, the existence of vertices with degree two implies that the complete bipartite subgraph K_{m_1,m_2} is $K_{n-1,2}$ or $K_{n,1}$. But for $K_{m_1,m_2} = K_{n,1}$, there will exist a vertex with degree *n* in graph *G*, a contradiction to $d_1 = n - 1$. For $n \ge 7$, $K_{n-1,2}$ implies that there at least exist two vertices with degree no less than $n - 1$, a contradiction. Consider the following cases for x_5 and $n \leq 5$.

Case 4.1. $x_5 = 0$. Clearly, $x_4 = n - 3$, $x_3 = 7 - n$, $x_2 = n - 4$. Consider the following cases.

Case 4.1.1. $n = 3$. Clearly, $x_2 = -1 < 0$, a contradiction.

Case 4.1.2. $n = 4$. Clearly, $d_1 = 3$, $x_4 = 1$, $x_3 = 3$, $x_2 = 0$, but $d_1 = 3 < 4$, a contradiction.

Case 4.1.3. $n = 5$. Clearly, $d_1 = 4$, $x_4 = 2$, $x_3 = 2$, $x_2 = 1$, i.e., there exist three vertices of degree four, two vertices of degree three and one vertex of degree two in graph *G*. All the graphs with three vertices of degree four, two vertices of degree three and one vertex of degree two and with complete bipartite subgraph *K*2,⁴ have been enumerated; they are isomorphic to the graph shown in [Fig. 2.](#page-2-0) By using Maple, the Laplacian characteristic polynomials of the graphs *G* and W_6 are

$$
P_{L(G)}(\mu) = \mu^6 - 20\mu^5 + 155\mu^4 - 580\mu^3 + 1044\mu^2 - 720\mu,
$$

\n
$$
P_{L(W_6)}(\mu) = \mu^6 - 20\mu^5 + 155\mu^4 - 580\mu^3 + 1045\mu^2 - 726\mu.
$$

Clearly, they have different Laplacian characteristic polynomials, a contradiction.

Case 4.2. $x_5 \ge 1$. Clearly, for $3 \le n \le 5$, $x_4 = n - 3 - 3x_5 < 0$, a contradiction.

Case 5. d $_1=n$. Since both *G* and W_{n+1} have the largest degree $n,$ $\overline{W_{n+1}}=\overline{C_n}+b$ and $\overline{G}=\overline{G}'+b,$ where $\overline{G'}$ is an unknown graph. [Lemma 2.6](#page-1-7) implies that \overline{G} and $\overline{W_{n+1}}$ are cospectral, i.e., $\overline{C_n}$ and $\overline{G'}$ are cospectral. Since the circuit C_n is determined by its Laplacian spectrum [\[6\]](#page-3-11), so is its complement $\overline{C_n}.$ Then, $\overline{G'}$ is isomorphic to $\overline{C_n}$, i.e., \overline{G} is isomorphic to $\overline{W_{n+1}}.$ Therefore G is isomorphic to W_{n+1} .

For a graph, its Laplacian eigenvalues determine the eigenvalues of its complement [\[15\]](#page-3-9), so the complements of all the wheel graphs W_{n+1} , except for W_7 , are determined by their Laplacian spectra.

4. Conclusion

In this paper, the wheel graph W_{n+1} , except for W_7 , is proved to be determined by its Laplacian spectrum by showing that a graph *G* cospectral to the wheel graph *Wn*+¹ must have a universal vertex, and this is the key point of the paper.

We would like to close this paper by posing an interesting question. Since the wheel graph $W_{n+1} = C_n \times b$ for $n \neq 6$ and the fan graph $F_{n+1} = P_n \times b$ (see [\[3\]](#page-3-2)) are proved to be determined by their Laplacian spectrum, C_n and P_n are also determined by their Laplacian spectrum (see [\[6\]](#page-3-11)); our question is that which graphs satisfy the following relation:

"If G is a graph determined by its Laplacian spectrum, then $G \times b$ is also determined by its Laplacian spectrum."

If *G* is disconnected, i.e., *G* has at least two components, then the above relation is true (see Proposition 4 in [\[9\]](#page-3-3)). But, if *G* is connected, it is known that only the complete graph K_n , the circuit C_n with $n \neq 6$ and the path P_n satisfy the above relation until now.

Acknowledgements

The authors are indebted to the anonymous referees; their useful comments led to an improved version of the manuscript.

References

- [1] N.L. Biggs, Algebraic Graph Theory, second edition, Cambridge University Press, 1993.
- r 1 i N.L. biggs, Aigebraic Graph Theory, second edition, Cambridge University Press, 1995.
[2] N. Ghareghai, G.R. Omidi, B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most √2 + √5, Linear Algebra A
- [3] X.-G. Liu, Y.-P. Zhang, X.-Q. Gui, The multi-fan graphs are determined by their Laplacian spectra, Discrete Math. 308 (2008) 4267–4271.
- [4] G.R. Omidi, K. Tajbakhsh, Starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654–658.
- [5] X.-L. Shen, Y.-P. Hou, Y.-P. Zhang, Graph *Zⁿ* and some graphs related to *Zⁿ* are determined by their spectrum, Linear Algebra Appl. 404 (2005) 58–68.
- [6] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241–272.
- [7] W. Wang, C.-X. Xu, On the spectral characterization of *T* -shape trees, Linear Algebra Appl. 414 (2006) 492–501.
- [8] W. Wang, C.-X. Xu, Note: The *T* -shape tree is determined by its Laplacian spectrum, Linear Algebra Appl. 419 (2006) 78–81. [9] E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586.
-
- [10] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl. 278 (1998) 221–236.
- [11] A.K. Kelmans, V.M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combin. Theory Ser. B 16 (1974) 197–214.
- [12] J.-S. Li, Y.-L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear Multilinear Algebra 48 (20) (2000) 117–121.
- [13] W.N. Anderson, T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141–145.
- [14] K.C. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715–724.
- [15] A.K. Kelmans, The number of trees in a graph I, II, Autom. Remote Control 26 (1965) 2118–2129; 27(1966) 233–241; translated from Avtomatika i Telemekhanika 26 (1965) 2194–2204 and 27 (1966) 56–65 [in Russian].
- [16] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, Inc, 2001.